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Introduction

e general field of study of this internship at Imperial College of London, super-
vised by Jules Villard, was program verification. More precisely, writing specifica-
tions for imperative programs, and proving them. Such a specification being proved
means that the program actually observes the specified behavior, andmoreover does
not do illegal operations, such as, eg. dereferencing a NULL pointer.
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Ourmindset during this internship was rather pragmatic, keeping proof automa-
tion in mind at all times. We wanted to verify programs, but we wanted to do it in
the most simple, and the most easily automatable way possible. ere is always
some tension: if we decide to prove a specification describing the precise behavior
of the program (functional correctness), this proof will likely not be automatable. On
the other hand, proving only thememory safety of the program is too weak to prove
recursive programs, for example. We will have to find the right balance, between
the will to simplify a program specification to its essence, and the need for it to be
still provable.

An example of such choice is, for example, when dealing with a program copy-
ing a tree, having to choose between a specification expressing that the new tree
is identical to the input one, and an other one saying just that, aer running the
program, you now have two trees.

Our contributions consists of a new framework for writing program specifica-
tions. We first show that it leads to natural and very convenient specifications. We
then identify various lemmas and use-cases, gathering a “toolbox” for our frame-
work, illustrating different paerns via examples, where we are able to show sim-
pler proofs than the state of the art. Finally, we discuss about automation of proofs
in our framework.

1 Playing with separation logic: the copytree case study

ere exists a well-known and well-used framework for the verification of impera-
tive programs: separation logic [14], used in automated provers (Corestar [3], SLAyer
[2], [6], [18], Infer [5], Hip/Sleek [10]), implemented as libraries (Ynot [7], MSL [1]),
etc.

Aer a short introduction to the principles of separation logic, we will illustrate
its use on a small example program. Despite being seemingly simple, it will shed
light on some difficulties. ese difficulties have led, in the literature, to complicated
and hardly automatable solutions - thus motivating our contribution.

1.1 Separation logic: a qui introduction

Separation logic was designed as an extension of Hoare logic able to reason about
imperative programs manipulating shared mutable data structures [14]. is means
first that a specification for a program c is given as a Hoare triple, of the form tP u c
tQu . Secondly, the extension is twofold: the logic of assertions (used to express the
precondition P and the postcondition Q of a Hoare triple) is extended, and a new
deduction rule for Hoare triples is added.

Assertion formulæ are wrien in a language derived from the logic of Boolean
Bunched Implications (BBI) [12]. ey describe properties of memory heaps: we
want to verify programs manipulating on-heap data structures.
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Syntactically, the language of assertion formulæ consists of the usual formulæ
of propositional logic, plus three new forms that describe the heap:

Definition 1 (Separation logic formulæ syntax)

P,Q ::= propositional logic
| emp (empty heap)
| x ÞÑ x1 (x, x1 are integer expressions) (singleton heap)
| P ›Q (separating conjunction)

e integer expressions occurring in singleton heaps (x ÞÑ x1) may contain in-
teger variables, interpreted as in standard Hoare logic, using some store associating
values to variables (similar to the program stack).

Semantically, models of such logic need to describe memory heaps. We will
not try to describe more precisely these models [4] [14], and just fix partial functions
from addresses (integers) to values (integers) as representations for memory heaps.

Definition 2 (Models for separation logic)

h, h1 (heaps) ::= Addressesá Values
Addresses,Values ::= N

We will write dom(h) for the domain of the h partial function.
en, we can define by induction the relation s, h |ù P , meaning that the heap

represented by h, associated to the store s, satisfies the assertion P :

Definition 3 (Formulæ semantics)

s, h |ù J always
s, h |ù K never
s, h |ù ␣A ô h *ρ A
s, h |ù A1 ^A2 ô h |ù A1 and h |ù A2

s, h |ù A1 _A2 ô h |ù A1 or h |ù A2

s, h |ù A1 Ñ A2 ô h |ù A1 implies h |ù A2

s, h |ù emp ô dom(h) = ∅
s, h |ù x ÞÑ x1 ô dom(h) = t[[x]]su and h([[x]]s) = [[x1]]s
s, h |ù A1 ›A2 ô Dh1, h2 : dom(h1)X dom(h2) = ∅

and h = h1 Y h2
and h1 |ù A1 and h2 |ù A2
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In the rest of this document, we will define:

Definition 4

h1 ‘ h2 ” h1 Y h2 when dom(h1)X dom(h2) = ∅

so we can also write:

s, h |ù A1 ›A2 ô Dh1, h2 : h = h1 ‘ h2 and h1 |ù A1 and h2 |ù A2.

emp describes an empty heap, x ÞÑ x1 a heap containing only one memory cell,
at address x, containing x1. A1 › A2 describes the conjunction of two separated
heaps, one satisfying A1, the other satisfying A2.

Separation logics are usually extended with a few more operators, such as −−›,
Y› , etc. We will introduce them later when needed. We will also allow the - quite
common - use of existential quantifiers on stack variables, for the purpose of intro-
ducing new names.

Separation logic is an extension of Hoare logic, which aim is to derive Hoare
triples, of the form tP u c tQu . In includes all the usual rules of Hoare logic, and
adds a new more: the frame rule, allowing to use the “separated” fact expressed by
›. at is, if we act on some part of the heap, separated parts are not modified:

Definition 5 (Frame rule)  

tP u c tQu
Frame

tP ›Ru c tQ ›Ru

when no variable free in R is modified by c

Using the frame rule, one can extend a local specification to a more global one,
adding arbitrary predicates describing parts of the heap not accessed by c. inking
backwards, this means that given some complicated description of the heap, we
will be able to temporarily “frame out” the not interesting bits, and prove some
specification on the smallest footprint needed.

1.2 Using separation logic to verify a simple program

Following the path of Reynolds [14], we will now illustrate how separation logic
can be used to write and prove a specification for some (not so) simple program:
copytree.
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1.2.1 e copytree program: a first specification

e copytree program (in Figure 14), given a tree as input, explores it recursively
and copies it, finally returning the copy.

Because copytree does not reuse memory cells from the original tree, the new
tree is totally disjoint from the first one. us, starting with a heap holding some
tree rooted in x, aer running copytree we obtain a heap holding two separated
trees, rooted in x and x'.

us, given some “tree x” predicate describing a tree-shaped heap, we can write
a specification for copytree, thanks to the separating conjuction (›):

ttree xu x' = copytree(x) ttree x › tree x'u

To complete the specification, the “tree x” predicate must be defined. is can be
done inductively (x ÞÑ a, b, c being a shorthand for (x ÞÑ a)›(x+1 ÞÑ b)›(x+2 ÞÑ
c)):

tree x ” (Dval, l, r : x ÞÑ val, l, r › tree l › tree r)
_(x = 0^ emp)

In the non-trivial case, the two › express two different things: first, the root
node is separated from the subtrees, so there is no cycles, the subtrees cannot point
back to the root. inking backwards, if there was a cycle, then x would be in a
subtree (pointers of a tree only point to elements of itsel) - but this is not possible
as x is separated from the subtrees.

Secondly, the subtrees are separated from each other, so there is no sharing
between them, by the same kind of reasoning.

e proof of the specification that follows from here is relatively simple, and
consists only of applications of the frame rule, the consequence rule and variable-
handling rules. To be completely formal, proofs of specifications should be pre-
sented as derivation trees of Hoare triples. However, we choose a lighter (and less
precise) presentation, by interleaving assertions (tP u) and program instructions.
More details about the specification of one instructions are given when needed.

e proof of the previous specification can be found in Figure 15,  denoting the
use of the frame rule.

A more detailed, similar proof can be found in [14], §6.

1.2.2 Using copytree on DAGs

e specification we just gave is not as general as possible: because copytree just
explores recursively its input, it also runs on a tree with sharing: a DAG (directed
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acyclic graph) (however, it does not on graphs, because cycles would make him loop
while allocating more and more memory).

Figure 1: Calling copytree on a DAG.

e copied tree is indeed a plain tree, as copytree does not observe - nor pre-
serve - sharing. As illustrated on figure 1, the shared parts (in grey) are duplicated
in the output tree.

Towrite a specification accounting for this behavior, one need to define a “dagx”
predicate. We can try to mimic the one for trees: similarly to trees, there are no
cycles in a dag, so we can keep the first ›: the root node shall be separated from
the subdags. However, the second › cannot be reused: we need a new operator to
express the fact that the two subdags share some part of the heap (in grey), which
was not the case with tree.

Separations logic oen introduce, to this purpose, an operator called overlapping
conjunction, Y› . An formula “P1 Y› P2” describes a heap composed of two subheaps,
sharing somememory cells, one satisfyingP1, the other satisfyingP2 - as illustrated
in Figure 2.

P1 Y› P2 ô

P1

P2

Figure 2: Overlapping conjunction.

e s, h |ù P relation is extended with the following rule, h2 corresponding to
the middle grey subheap of figure 2:

s, h |ù P1 Y› P2 ô Dh1, h2, h3 : s, h1 ‘ h2 |ù P1 and s, h2 ‘ h3 |ù P2
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en, “dag x” can be inductively defined by:

dag x ” Dval, l, r : x ÞÑ val, l, r › (dag l Y› dag r)
_(x = 0^ emp)

Afirst attempt to design a new specification using dag, bymimicking the previous
one, would give something similar to:

tdag xu x' = copytree(x) tdag x › tree x1u

However, if we try to prove this specification, we encounter a problem. When
dealing with the first recursive call, we would like to be able to prove the following
Hoare triple, to get an easy proof, similar to the previous one:

tx ÞÑ l, r › (dag l Y› dag r)u
tree* l' = copytree(x->l)

tx ÞÑ l, r › (dag l Y› dag r) › tree l1u

In the previous cases, all the predicates were separated by ›, so we were able to
apply the frame rule. Here, we would like to use some kind of frame rule to isolate
only the dag l bit we want. However, we are not able to use the frame rule here,
because of the presence of Y› instead of ›. is is for good reasons: the induction
hypothesis (our specification), is not strong enough - it does not imply that the
recursive call preserves the subdag it is called on.

Some evil_copytree function could indeed erase the input dag and satisfy the
same specification (an empty dag is still a valid dag):

tdag xu x' = evil_copytree(x) tdag x › tree x1u

Figure 3: Heap aer the first recursive call of evil_copytree.
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In the case of evil_copytree, aer the first recursive call, the structure is no
longer a valid structure, because of the dangling pointers from the old right subdag
to the - now deleted - shared part (Figure 3).

More generally, this specification is too weak to imply that, aer the first recur-
sive call on “dag l”, we still have “dag r”, and that we can still fold back the structure
to a dag.

State of the art: In the same paper where he describes these difficulties ( [14]),
Reynolds gives some idea for a solution: use an assertion variable that quantifies
over properties of the heap.

tp^ dag τ xu x' = copytree(x) tp › tree τ xu

Indeed, as the initial heap is not modified by copytree, every property p holding for
this heap remains true in the postcondition - separated from the copied tree. is
solution has a taste of second order logic, which is hard to handle for an automatic
tool, and seems a bit overkill for such a simple program.

Another solution comes from Hobor and Villard [11]: it requires using a much
more precise dag predicate, and then proving functional correctness of the program.
ey use an alternative rule, the ramification rule, to obtain multiples lemmas to be
proved in the metatheory (using semantic reasoning).

Both solutions parametrize the tree and dag predicates by mathematical struc-
tures representing the content of the in-memory structure (the τ parameters). is
is quite useful when doing manual proofs, as it lis some reasonings to the metathe-
ory where doing proofs is easier. However, manipulating them using an automatic
tool is not always that easy: we would like to not use them, and have less precise,
more simple predicates.

e aim of this internship is to try to answer the question: can we do beer, by
modifying our separation logic? We will need to find something in the middle: as
seen before, the “most simple” specification does not work, so we still need a more
expressive logic.
is would mean modify the assertions logic, and/or modify the set of Hoare rules.

A first grasp of what will be the main idea: as we want to talk about preserving
parts of the heap, we will name them, using labels (think heap variables).

2 Extending separation logic: hybrid separation logic

2.1 Definitions

Following the ideas of HyBBI [4], hybrid separation logic extends usual separation
logic by adding the possibility to name memory heaps in formulas. Each name (or
label) will describe only one precise heap.

Formally, the syntax of assertion formulæ is extended:
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Definition 6 (Hybrid separation logic formulæ syntax)

P,Q (hybrid formulæ) ::= separation logic formulæ
| ℓ (heap variables or labels)
| @ℓA (@-modality)
| Dℓ : A (D-quantified labels)

Semantically, the |ù relation is now also parametrized by a valuation ρ : Labelsá
Heaps, and extended with:

Definition 7 (Hybrid formulæ semantics)

s, h |ùρ ℓ ô h = ρ(ℓ)
s, h |ùρ @ℓA ô s, ρ(ℓ) |ùρ A
s, h |ùρ Dℓ : A ô exists hℓ heap st. s, h |ùρ[ℓÑhℓ] A

e semantics of standard separation logic formulæ are not affected by ρ, which
is just recursively propagated.

A label ℓ is valid for only one heap, ρ(ℓ); @ℓA forgets about the current heap and
queries for validity of A on the heap corresponding to ℓ. We also allow existential
quantified labels, for the purpose of introducing fresh names.

e deduction rules for Hoare triples are the same as in standard separation logic.
No additional rule was needed in our use cases, and we believe that it should be the
case for other examples as well.

2.2 e hybrid separation logic toolbox: useful remarks & lemmas

Let us now explore the possibilities of hybrid separation logic by going through
various lemmas that will prove useful, and illustrative examples.

2.2.1 Hybrid formulæ

Characterization of Y› In hybrid separation logic, the overlapping conjunction
“P Y› Q” can be characterized using a formula of the logic that does not use Y›:

P Y› Qô Dd, a, b, u, v : (a › d › b)^@u(a › d)^@v(d › b)^@uP ^@vQ
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Figure 4: Characterizing Y› using › and labels.

Fresh labels are introduced to name the different parts of the heap, then grouped
accordingly and associated to the predicates P and Q using @-modalities.

Such characterization is quite useful: it allows us to express specific reasonings
aboutY› as a combination of more general lemmas talking only about labels and @s.

Interactions between ℓ and@ℓ We have this rather intuitive lemma, that we will
use extensively:

Lemma 1
ℓ^@ℓP ñ P

e reverse implication is not always true: multiple heaps may satisfy P , while
u denotes one precise heap.

P ^@uP äñ u

us, the reverse holds only when P is a strictly exact assertion (Reynolds [14],
Yang [17]). P is strictly exact iff for all s, h, h1, ρ, (s, h |ùρ P ) and (s, h1 |ùρ P )
implies h = h1. One example of strictly exact assertion is a single label, the ›-
conjunction of multiple labels, a memory cell x ÞÑ y, or even emp.

On the opposite, a trivially non exact formula is J, true for every heap, or Dy :
x ÞÑ y for example.

Consequently, we have the following lemma, that we will use in our future
proofs:

Lemma 2 If P strictly exact,

P ^@ℓP ñ ℓ

2.2.2 Hybrid formulæ in Hoare triples

Hoare triple validity As a remainder,
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Definition 8  

tP u c tQu is valid if for all h, s, ρ such that s, h |ùρ P , if the command c
runs without errors, giving store and heap s1, h1,
then s1, h1 |ùρ Q.

Some examples

• tℓu skip tℓu is valid;

• tℓ^@ℓ(y ÞÑ v)u x = *y tℓu is also valid (x = foo modifies the store s, not
the heap);

• tℓ^@ℓ(x ÞÑ 4)u *x = 3 tℓu is not;

• tℓu *x = 3 tℓu is not either: a free label is implicitly universally quantified.

What is interesting here is that we can reuse labels from the precondition in the
postcondition, allowing to express the intuition that “this part of the heap hasn’t
changed”. Moreover, free labels are implicitly universally quantified, because of the
definition of validity of a Hoare triple, where ρ is (meta-)universally quantified.

D-quantifiers, in practice In practice, D-quantified labels are used for the only pur-
pose of introducing fresh names: D are prenex in this case, and can be easily elimi-
nated using a standard Hoare rule.

tP u c tQu
Exists

tDx.P u c tDx.Qu

e consequence is that in practice, we never need to explicitly manipulate for-
mulas with D.

e propagation lemma is lemma is rather intuitive: it lives on the idea that
some @ℓP modality do not talk about the current heap, but about the one corre-
sponding to ℓ. us, as long as the ρ valuation is the same, the @ℓP assertions
holds. All this leads to the following lemma:

Lemma 3 (Propagation lemma) tA^@ℓP u c tBu ñ tA^@ℓP u c tB^@ℓP u

Consequently, as soon as we know some fact “@ℓP ”, we can freely add it in the
postcondition if needed: ρ, assigning heaps to labels is still the same aer running
c.
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Using the propagation lemma in proofs anks to the propagation lemma, when
writing assertions in proofs, we do not need to repeat the “@ℓP ” facts: they propa-
gate.

us, we can draw a distinction between the components of an assertion for-
mula: a part of it describes the current heap: we call it the spacial part of the formula.
e other part is composed of the propagating @ modalities.

u › v › x ÞÑ y
loooooomoooooon

spacial part

›@utree x ›@vA
loooooooomoooooooon

pure facts (propagate)

Figure 5: e two parts of an example formula.

en, when writing proofs using hybrid separation logic, we will usually only
write the spacial part of the formula, and write the pure facts only when we intro-
duce them.

Equipped with this “hybrid separation logic toolbox”, we will now try to demon-
strate the usefulness of such logic, by walking through different examples of pro-
grams to specify. We hope that the behaviors and difficulties they present and how
we handle them will be representative and useful for other cases.

3 Hybrid separation logic in practice: case studies

3.1 copytree on DAGs, revamped

e problem with the previous specification was that it was too weak to imply that
copytree doesn’t modify the input dag. If we know that the input dag is le un-
touched, then we can, aer the first recursive call, recover the shared part and make
the second call.

We saw that a label can be used in the precondition and in the postcondition of
a Hoare triple. is is a good way to express the fact that some heap is preserved:
a label describes only one precise heap. Using this idea, we get the specification of
Figure 6.

tℓ^@ℓdag xu x' = copytree(x) tℓ › tree x1u

Figure 6: New specification for copytree.

Remark: we write only ℓ in the postcondition. ℓ by itself is of lile use; however,
if needed, we can use the propagation lemma to get @ℓdag x in the postcondition
as well. We see here that another consequence to the propagation lemma is simpler
specifications.

e main axes of the proof are drawn in Figure 16.
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Figure 17 gives a detailed proof of the Hoare triple for the first recursive call.
Successive preconditions then postconditions are implied (from top to boom), this
way denoting the use of the consequence rule of Hoare logic. e assertions are
presented in two parts, the le part being the spatial description of the heap, the
right part holding @-modalities, that propagate thanks to Lemma 3.

e proof for the second recursive call is similar.

3.2 Modifying the content of the input: mark

e example of copytreewas actually a bit simple. As the copytree program does
not modify its input, it was a perfect fit for labels, that easily state what does not
change. However, many programs want to actually modify their input data struc-
tures.

Consequently, we study here the case of mark, a program that recursively marks
the nodes of a dag, changing the val field of each node to 1 (code in Figure 19).

An important remark about mark is that it modifies the heap, but preserves its
shape. e l and r pointers of each node are preserved, so the final heap will cover
the same memory locations as the initial one.

We can reflect this kind of property to labels, by defining a new “same region”
operator, “„”:

Definition 9 (“Same region” operator)  

For all labels ℓ, ℓ1, heap h, store s, valuation ρ,
s, h |ùρ ℓ „ ℓ1 if dom(ρ(ℓ)) = dom(ρ(ℓ1))

For example, the following formulas are valid:

@ℓ(x ÞÑ 3),@ℓ1(x ÞÑ 4) ñ ℓ „ ℓ1

@ℓ(x ÞÑ 3) › (y ÞÑ 4), @ℓ1(x ÞÑ 3) ñ ℓ ȷ ℓ1

ℓ „ ℓ
@ua › b, @va

1 › b1 ñ a „ a1 ^ b „ b1 ñ u „ v

We could extend this definition to allow „ to act on any strictly exact assertion
(we just need a way to associate to an assertion the heap it describes). In practice,
we just want to use„ on conjunctions of labels, so we will consider this as an abuse
of notation (we could labels to name the conjunctions, using D…).

Using this “notation”, we can now write for example:

a „ a1 ^ b „ b1 ñ a › b „ a1 › b1

Remark 1 • „ is an equivalency relation.

• as a “ℓ „ ℓ1” kind of assertion does not talk about the current heap, it’ll
count as a pure fact that propagates, just like @ modalities.
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anks to this new definition, we can write a specification for mark in Figure 7.

tℓ^@ℓdag xu mark(x) tDℓ1 : ℓ1 ^@ℓ1dag x^ ℓ „ ℓ1u

Figure 7: Specification for mark.

As for copytree, we will give the proof outline in Figure 19, and then focus on
the proof of the Hoare triple for the first recursive call.

What is happening here? e initial heap can be divided into three parts: the
“le” and “shared” parts compose the le subdag, while the “shared” and “right”
parts compose the right subdag. en, each recursive call updates two parts of the
heap: the first recursive call updates the le part and the shared part, u = dl › d,
giving u1 = d1

l › d
1. Because only the content of the nodes has changed, we have

u „ u1.
en, the second recursive call updates the shared part and the right part, v1 =

d1 › dr , giving v2 = d2 › d1
r , with v1 „ v2.

Now, can we conclude, and obtain the postcondition tDℓ1 : ℓ1^@ℓ1dag x^l „ l1u?
We know that @u2(d1

l › d
2) ^ @v2(d2 › d1

r) ^  @u2dag l ^ @v2dag r, so by
introducing a new name ℓ1, representing the heap corresponding to d1

l›d
2›d1

r ›x ÞÑ
1, l, r, we have “Dℓ1 : ℓ1 ^@ℓ1dag x”.

We also know that u „ u1 and v1 „ v2, i.e. dl › d „ d1
l › d

1 and d1 › dr „ d2 › d1
r .

en,
dl › d › dr „ d1

l › d
1 › dr „ d1

l › d
2 › d1

r

Moreover, x ÞÑ val, l, r „ x ÞÑ 1, l, r, so l „ l1, which concludes the proof.

We can now focus on the first recursive call, mark(l). Proving its Hoare triple
will require an auxiliary lemma, whose purpose is to somehow recover the right
subdag aer modifying the le one.

Figure 8: e auxiliary lemma, pictured.
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e rightmost part, dr , used to have pointers into the now-gone shared part.
However, because the regions are preserved, we know they point somewhere into a
dag (u1). If we name d1 the part of the heap reachable from these pointers, it contains
no cycles - thus dr › d1 must be a dag.

e lemma is as follows:

Lemma 4 (Auxiliary lemma)

@u(dl › d)^@udag l ^@v(d › dr)^@vdag r ^ u „ u1 ^@u1dag l
$ Dd1, d1

l, v
1 : @u1(d1

l › d
1)^@v1(d1 › dr)^@v1dag r

is lemma describes more situations that what actually happens: it allows mark
to change the structure of the dag laying in u1, as long as it’s still a dag. In practice,
mark does not change dag pointers, but this lemma is enough for the induction to
hold.

e detailed proof, using this lemma, follows in Figure 20.

3.3 Modifying the shape of the input: spanning

In this third example, we will proof a specification for a program that not only mod-
ifies the content of its input, but also its shape. Indeed, spanning computes the
spanning tree of a dag, modifying it in place to remove superfluous edges.

Remark 2 We could have proved a version of spanning computing the spanning
tree of a graph. However it would add a lot of bureaucracy to the proof in order to
handle cycles, while not requiring new key ideas, so we seled on dags instead.

While walking through the dag and removing edges, spanning marks nodes it
explores: at each moment of the computation, a part of the structure will be com-
posed of unmarked, still unprocessed nodes; the other part, composed of marked
nodes, has already been explored by the algorithm and contains tree fragments.

Initially, spanning receives as input a dag of unmarked nodes, and because it
is a recursive program, some nodes of this dag may point to marked nodes. en,
spanning will mark and compute the spanning tree for the unmarked part, while
preserving the marked part (as soon as spanning walks to a marked nodes, it stops
and returns).

e result is a heap holding a marked tree. e code of spanning is in Figure
21.

A first difficulty with spanning is that the input structure is different from what
we saw before. It is not a dag: the dag-like unmarked part has pointers to some
marked nodes. Moreover, wewant to be able to name the heap beyond these marked
nodes, while not precisely knowing what its composed of (the algorithm will not
need to explore it): we need to express the fact that it is preserved by the algorithm.
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We cannot use two predicates, one for each part (unmarked, marked) of the
heap: the unmarked part has pointers to the marked part, so we cannot describe it
separately using an inductive predicate. us, a single inductive predicate will have
to describe the whole heap.

e key idea is then to parametrize this predicate by two labels, in order to name
the two parts. is way, these two parts can be defined depending of each other, but
still named separately using the label parameters.

dag(x, a, b):

Figure 9: Shape of the input heap (marked nodes in grey).

As a trick to make the proof work nicely, we also allow the “b” part to contain
arbitrary memory cells, as long as the nodes reachable from a are marked.

All of this gives us the following inductive predicate dag(x, a, b):

dag(x, a, b) ”
(x = 0^@aemp^ a › b) _

(Dl, r, a1, b1, a2, b2 :
x ÞÑ 0, l, r › dag(l, a1, b1)Y› dag(r, a2, b2)
^ @ax ÞÑ 0, l, r › (a1 Y› a2)
^ @bb

1 Y› b2

^ a › b) _

(Dl, r : a › b^@aemp^@bx ÞÑ 1, l, r › J)

Figure 10: Inductive predicate for the spanning input structure.

e first case describes the situation where the dag is trivial; thus a is emp. In
the second case - as illustrated in Figure 11 - the root is unmarked, and recursively
points to two shared subdags. e a label describes the heap holding the root, and
the unmarked parts of the subdags; while b describes the overlapping of the two
marked parts of the subdags. In the third case, the root is marked: a is emp, and the
root plus arbitrary content (described by J) holds in b.
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Figure 11: Shape of the heap in the recursive case of dag(x, a, b).

To get a provable specification, we need a last thing. Because in the proof we
will care about whether a node is marked, we need to express that the final tree is
marked. is is easy, defining a new “marked tree” inductive predicate:

mtree x ” (Dl, r : x ÞÑ 1, l, r ›mtree l ›mtree r)
_ (x = 0^ emp)

en, the specification for spanning is as follows:

tdag(x, a, b)u spanning(x) tDa1 : a1 › b^@a1mtree x^ a1 „ au

Let us now give the key ideas for the proof, leaving the details in Annex B.

First of all, the definition of our new dag trivially implies the following:

Lemma 5
dag(x, a, b)ñ a › b

e second idea is to, in some way, refactor the assertion obtained in the second
inductive case of dag. It consists of applying Lemma 6, that can be found in the
literature, associated to the notion of region [11], [15], [13].

Lemma 6
(a1 › b1)Y› (a2 › b2)ñ (a1 Y› a2) › (b1 Y› b2)

if the heaps represented by a1 and b2 are separated, and same for b1 and a2.

In our case, we can apply it to the overlapping of the two subdags, as illustrated
on Figure 12 (the red and green parts indicate the two assertions separated by an
operator, on the le of the implication, Y› , on the right, ›).
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Indeed, the definition of dag clearly states that a and b are separated (. . .^a›b);
then because a contains a1 and b contains b2, a1 and b2 are separated. Same goes for
b1 and a2.

Figure 12: Two descriptions of a dag, thanks to Lemma 6.

Aer applying the lemma, the description of the heap we obtain is nicer: we can
handle the unmarked (a1 Y› a2) and the marked part (b1 Y› b2) separately.

en, the tri allowing us to continue aer the first recursive call is to use the
fact that the marked part of a dag(. . .) assertion is extensible. As illustrated in Figure
13, aer calling spanning on the le subdag, we know that @a1

1
mtree l, so we can

just use dag(r, d2
a, a

1
1 › b

2) as a precondition for spanning(r). As the marked part
is preserved, right aer the second recursive call we will still have a1

1 › b
2, plus the

tree replacing d2
a.

Figure 13: Recursive call of spanning on the le subdag.

Finally, a small auxiliary lemma is needed. Just like for mark, we will need an
auxiliary lemma - this one being morally simpler that the one for mark. We need to
express that, right aer recursively calling panning on the le subdag, the remaining
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unmarked bits of the right subdag, d2
a, still form a dag. us, we can obtain the

required precondition for spanning(r).

Lemma 7 (Auxiliary lemma)

@a1d1
a › da ^@a2da › d

2
a ^@vdag(x, a2, b2)^ a1 „ a1

1 ^@a1
1
mtree(l) $

Dw : @wd
2
a › a

1
1 › b

2 ^@wdag(x, d2
a, b

2 › a1
1)

Using all these four ideas, we can write a detailed proof of this specification for
spanning. e proof in the non-trivial case can be found in Annex B.

4 Towards automatic reasoning on hybrid formulæ

Our general goal and motivator is the automation of program proofs. It is thus
natural to wonder how hybrid separation logic can be dealt with using automatic
tools. To this purpose, we tried different approaches; the two that proved somehow
fruitful are detailed below.

4.1 Integration in llStar: proving copytree

e first approach consists of, quite pragmatically, trying to prove our specification
with labels for copytree in an existing automatic prover, llStar [16]. e llStar
prover is built on top of coreStar [3], and allow proving program specifications
for programs that can be compiled to LLVM bitcode. In particular, we are able to
write programs in C, just like in the examples, and compile them using clang before
giving them to llstar.

e core logic of coreStar only knows about standard separation logic. How-
ever, coreStar’s flexible proof engine, which performs symbolic execution, allows
the user to define new custom predicates and logic rules. We will use this feature to
try to bake our reasonings on labels into custom rules.

e question is then to see, first, if we can prove some specification for copytree
with this method, and then how hardcoded (or not) our custom rules will be.

Aer finally coming up with the set of rules wrien in Annex D (also available in
llStar hg repository), the answer is “yes” and “not that much”.

First, with this set of rules, llstar successfully proves the following specifica-
tion for copytree: tℓ ›@ℓdag xu z = copytree(x) tℓ › tree zu .

Remark 3 As it is in general difficult for automatic provers to handle both › and
^ in assertions, we implicitly define that @-modalities always describe the empty
heap.

is way, we can write P ›@lQ . . . instead of the P ^@lQ . . . we are used
to; which simplifies things a bit.
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Let us now quickly step through the rules, without according too much time to
their syntax.

e first group of rules encodes the definitions of tree and dag to rules unfolding
the predicate to its definition (tree_unfold_right, dag_unfold_under_at)), or
proving the predicate when given the unfolded bits (dag_fold). Only the rules that
were needed for the proof are wrien here, but following the same idea more can
be wrien, to cover more use cases.

en, the second group contains rules following the ideas of Lemma 1 and
Lemma 2: either inline the content of a @ℓ if ℓ can be found, or prove ℓ from @ℓ

contents. e inline_at_labels[2,4] rules describe inlining of a conjunction of
labels. Because llStar doesn’t allow to talk about a n-ary conjunction of labels, we
had to write a rule for each number of labels we needed; this may be improved by
hacking into llStar. e fold_at[2,4] rules express the opposite operation, as
in Lemma 2. However, wrien naively it would loop with inline_at_labels, so
instead of replacing a conjunction of labels by a single label, we inline the content
of the @, but in the right hand side of the sequent. e same idea holds for @s
containing “pointsto”.

Finally, we have some rules to do the basic reasonings, once everything possible
is inlined thanks to the previous ones. A@ab is translated to a label equality; match-
ing@lP with@uP tries to prove that l = u; and we instantiate fresh variables when
needing them to equal something else.

What we can observe from these rules is that they are lile specific to copytree:
most of them handle labels and @-modalities in a generic way. It seems that such a
set of rules can be a sane basis for proving other examples in llStar, and could be
reused and extended quite easily.

4.2 oughts about handling hybrid formulæ in tools

e previously presented llStar rules (and even llStar rules in general), if suffi-
cient for our example, cannot deal with arbitrarily complex formulæ (for example,
multiple nested @s).

Consequently, we try here to encompass all the possibilities of hybrid assertions,
and draw some ideas on how they could be handled by an automatic tool. We could
not put these ideas into practice yet, but they could serve as a basis for a label-based
solver.

Our general goal in this part is, given in hybrid formula, be able to process it in
some way it structure becomes clearer, and know the shape of the heap it describes,
the predicates it holds, if they share parts of the heap, etc.

4.2.1 Expressive power of hybrid formulæ

Wecan distinguish different possibilities offered by labels and@s, making the hybrid
formulæ at the same time expressive and difficult to handle automatically.
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• Sharing between predicates. We assume that our formulæ contain arbitrary
predicates (it can be x ÞÑ . . ., tree x, etc. en some predicates may share
some part of the heap described by the formula, just as in P Y› Q.
Examples:

– (a › b › c) ›@u(a › b) ›@uP ›@v(b › c) ›@vQ

– ℓ ›@ℓP ›@ℓQ

• Different descriptions of the heap. A formula holding (a›b›c)^ . . . describes
the heap as being separated on three parts, at least. However, we can have
multiple, different descriptions of the same heap, using different @ℓ with the
same ℓ.
For example,

g ›@g(a › b › c) ›@g(u › v) › . . .

Here, we know that the global heap can be separated in three parts, but also
in two. Moreover, nothing requires these two descriptions to be compatible:
they can really be two different visions of the same heap.

• Arbitrary number of indirections. It is possible to have an arbitrarily long
chain of @s refining the knowledge on some label. For example, knowing
that the toplevel holds the a label may not be the more precise description, if
we know that @a(u › . . .). But then, we can also have @u(w › . . .), etc.

We would like to have a kind of normal form for hybrid formulæ, accounting of
these specifics, and allowing to easily determine the shape of the heaps described
by an assertion.

4.2.2 Standard form

We start by defining an intermediate form, the standard form.

Definition 10 (Standard form) A hybrid formula in standard form is composed
of:

(u1 › . . . › un) › A toplevel description of the heap
@a1(b

1
1 › . . . › b

p
1) › . . . ›@am(b

1
m › . . . › b

q
m) › Various @s between labels

@vP1 › . . . ›@wPr Labelled predicates, where every Pi

does not contains any › (”small” predicates)

Puing an arbitrary formula into standard form is relatively simple. We do it by
recursively walking through the formula and applying the following rewrite rules:
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• Assign a label to every “small” predicate

P ⇝ ℓ ›@ℓP l fresh variable
P ›Q ⇝ (u › v) ›@uP ›@vQ u, v fresh variables

• Simplify nested @s

@ℓ(. . . ›@u(. . .)) ⇝ @ℓ(. . .) ›@u(. . .)

An example of such rewriting is:

ℓ › (x ÞÑ y) ›@u(a › P ) ⇝ ℓ › v ›@v(x ÞÑ y) ›@u(a › b) ›@bP

4.2.3 Canonical form

An assertion in standard form does not gives so much information. First, we do not
know if the “toplevel” description of the heap is the more precise possible: some
@a(b1 . . . bn) may refine this description, if inlined into the “toplevel” part. More-
over, given a @uP , because of all of these entangled @s in the second part, we
cannot easily know if u can be found in the toplevel description, i.e. if P holds in
the heap described by the formula.

Consequently, our goal is now to simplify the second part of the formula, to have
the most precise heap description possible, and be able to easily lookup for satisfied
predicates.

A first idea is to inline the @s on labels in the toplevel formula, following the rule:

(a › . . .) ›@a(u › v) ⇝ (u › v › . . .) ›@a(u › v)

However, such rewrite rule is ambiguous. For example, how should be handled
the following assertion?

(a › . . .) ›@a(u › v) ›@a(x › y › z) ⇝ ?

A solution is to simply compute each inlining possible, giving us, as a result, a
list of “toplevel heap descriptions” - associated with the chosen @s. Eg, applied to
our previous assertion, we get:

(a › . . .) ›@a(u › v) ›@a(x › y › z) ⇝ [(u › v › . . .) ›@a(u › v);
(x › y › z › . . .) ›@a(x › y › z)]

e list we get is a list of different “visions” of the heap: each formula describes
the same heap, but in a different way - they will be combined by a^. We call these
layers.
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However, this is not enough to have all the possibly useful heap descriptions.
Formally, we just applied Lemma 1 everywhere, but sometimes we also want to use
Lemma 2.

For example, consider the following assertion:

(a › b) ›@u(a › b) ›@u(c › d) ›@cP . . .

Applying the previous inlining procedure will not do anything; however, (c › d)
is also a valid description of the heap. Applying greedily Lemma 2 everywhere just
like for Lemma 1 will not work, as it would undo all the inlinings of Lemma 1.

What we do is assume that what we want is, given some @ℓP , know if ℓ can
be found in some heap description. en, for each @ℓP , we follow @s indirections
from ℓ to a toplevel description, and add all the intermediate toplevel descriptions
found along the path.

en, we obtain an assertion in canonical form:

Definition 11 (Canonical form) A formula F in canonical form is composed of:(
ľ

i

layeri

)
›@ℓ1P1 › . . . ›@ℓnPn

where

layer ::= (u1 › . . . › un) ›@a1(b
1
1 › . . . › 1

p) › . . . ›@am(b
1
m › . . . › b

q
m)

and we have the following properties:

• For each layer, all ai are different

• For each layer, no @ can be inlined inside the toplevel description

• If F ñ P , then exists i st. F contains @ℓiP , and exists some layer where:
exists j st. uj = ℓi
or exists j1 . . . jk st. the layer contains @ℓi(ui1 › . . . › uik).

To wrap up, a formula in canonical form gives us easy access to the different
descriptions of the heap, and allow to easily know the part of the heap, in term of
labels, corresponds to some property. We believe that such canonical form can allow
and simplify further reasonings and automation on hybrid formulæ, by removing
the use to reason about Lemmas 1 and 2, as their use is baked into the canonizing
algorithm.

A prototype implementation of the canonized algorithms informally described
previously can be found at [9].
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Conclusion

We have presented a new framework, as an extension of separation logic, for writ-
ing and proving program specifications. It introduces the notion of label, as a name
allowing to talk about memory heaps in the logic of assertions. We gave a set of
lemmas useful when manipulating assertions and specification using this new logic.
We have demonstrated the applicability of our framework by proving specifications
for various examples, presenting different programming paerns and difficulties.
Finally, we successfully proved the specification of one of our previous examples
using an automatic prover, and presented an algorithm canonizing the hybrid for-
mulæ to a form easier to handle. is leads us to believe that hybrid separation logic
constitutes an elegant extension of separation logic for reasonings about imperative
programs and sharing in data structures.
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A Examples codes and proofs

typedef struct tree {
int val;
struct tree* l;
struct tree* r;

} tree;

tree* copytree(tree* x) {
if (x == NULL)

return x;

tree* l' = copytree(x->l);
tree* r' = copytree(x->r);

tree* x' = malloc(sizeof(tree ));
x'->l = l';
x'->r = r';
x'->val = x->val;
return x';

}

Figure 14: e copytree program.
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// tℓ^@ℓdag xu
tree* copytree(tree* x) {

if (x == NULL)
return x;

//

$

&

%

ℓ ^ @ℓ(x ÞÑ val, l, r › dℓ › d › dr)
^ @u(dℓ › d)^@udag l
^ @v(d › dr)^@vdag r

,

.

-

tree* l' = copytree(x->l);
// tℓ › tree l1u

// tℓ › tree l1u
tree* r' = copytree(x->r);

// tℓ › tree l1 › tree r1u

tree* x' = malloc(sizeof(tree ));
x'->l = l';
x'->r = r';
x'->val = x->val;

// tℓ › tree l1 › tree r1 › x1 ÞÑ val, l1, r1u

return x';
}
// tℓ › tree x1u

Figure 16: Proof of copytree specification using dags.
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// ttree xu
tree* copytree(tree* x) {

if (x == NULL)
return x;

// tx ÞÑ val, l, r › tree l › tree ru
//   ttree lu

tree* l' = copytree(x->l);
//   ttree l › tree l1u
// tx ÞÑ val, l, r › tree l › tree r › tree l1u

//   ttree ru
tree* r' = copytree(x->r);

//   ttree r › tree r1u

// tx ÞÑ val, l, r › tree l › tree r › tree l1 › tree r1u

tree* x' = malloc(sizeof(tree ));
x'->l = l';
x'->r = r';
x'->val = x->val;

// tx ÞÑ val, l, r › tree l › tree r › x1 ÞÑ val, l1, r1 › tree l1 › tree r1u

return x';
}
// ttree x › tree x1u

Figure 15: Proof of copytree specification.
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spatial part pure facts (propagate)

ℓ ^@l(x ÞÑ l, r › dℓ › d › dr)
^@u(dℓ › d)^@udag l
^@v(d › dr)^@vdag r

Lemma 1ñ x ÞÑ l, r › dℓ › d › dr

Frame rule:   dℓ › d
Lemma 2ñ u ^@udag l

l' = copytree(x->l)  u › tree l1

x ÞÑ l, r › u › tree l1 › dr
Lemma 1ñ x ÞÑ l, r › dℓ › d › tree l

1 › dr
Lemma 2ñ ℓ › tree l1

Figure 17: copytree: detailed proof for the first recursive call.
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void mark(dag* x) {
if (x == NULL)

return;

mark(x->l);
mark(x->r);
x->val = 1;

}

Figure 18: Code of the mark program.

// tℓ^@ℓdag xu
void mark(dag* x) {

if (x == NULL)
return;

//

$

&

%

ℓ ^ @ℓ(x ÞÑ val, l, r › dl › d › dr)
^ @u(dl › d)^@udag l
^ @v(d › dr)^@vdag r

,

.

-

mark(x->l);

//

$

&

%

Dd1
l, d

1, u1, v1 : d1
l › d

1 › dr › x ÞÑ val, l, r ^ @u1(d1
l › d

1)^@v1(d1 › dr)
^ @u1dag l ^@v1dag r
^ u „ u1

,

.

-

mark(x->r);

//

$

&

%

Dd2, d1
r, u

2, v2 : d1
l › d

2 › d1
r › x ÞÑ val, l, r ^ @u2(d1

l › d
2)^@v2(d2 › d1

r)
^ @u2dag l ^@v2dag r
^ v1 „ v2

,

.

-

x->val = 1;

// t Dd2, d1
r, u

2, v2 : d1
l › d

2 › d1
r › x ÞÑ 1, l, r u

}

Figure 19: Proof outline for mark.
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ℓ ^ @ℓ(x ÞÑ val, l, r › dl › d › dr)
^ @u(dl › d)^@udag l
^ @v(d › dr)^@vdag r

Lemma 1ñ dl › d › dr › x ÞÑ val, l, r
Frame rule:   dl › d
Lemma 2ñ u ^ @udag l

mark(l)  Du1 : u1 ^ @u1dag l ^ u „ u1

Du1 : u1 › dr › x ÞÑ val, l, r

Aux. Lemmañ Du1, d1, d1
l, v

1 :
 u1 › dr › x ÞÑ val, l, r ^ @u1(d1

l › d
1)

^ @v1(d1 › dr)^@v1dag r
Lemma 1ñ Du1, d1, d1

l, v
1 :

 d1
l › d

1 › dr › x ÞÑ val, l, r

Figure 20: mark: detailed proof for the first recursive call.

void spanning(dag* x) {
if (x == NULL || x->val == 1)

return;

x->val = 1;

if (x->l && !x->l->val)
spanning(l);

else
x->l = NULL;

if (x->r && !x->r->val)
spanning(r);

else
x->r = NULL;

}

Figure 21: Code of the spanning program.
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B Detailed proof of spanning specification

x ÞÑ 1, l, r › dag(l, a1, b1) Y› dag(r, a2, b2) ^a › b ^ @ax ÞÑ 0, l, r › (a1 Y› a2) ^ @bb
1 Y› b2

x ÞÑ 1, l, r › u Y› v ++ @udag(l, a1, b1) ^ @vdag(r, a2, b2)

Lemma 5 ñ x ÞÑ 1, l, r › u Y› v ++ @ua
1 › b1 ^ @va

2 › b2

Lemma 1 ñ x ÞÑ 1, l, r › (a1 › b1) Y› (a2 › b2)

Lemma 6 ñ x ÞÑ 1, l, r › (a1 Y› a2) › (b1 Y› b2)

x ÞÑ 1, l, r › d1
a › da › d2

a › d1
b › db › d2

b ++ @a1(d1
a › da) › @a2(da › d2

a) ›
  @b1(d1

b › db) › @b2(db › d2
b)

Lemma 2 ñ x ÞÑ 1, l, r › a1 › b1 › d2
a › d2

b

Lemma 2 ñ x ÞÑ 1, l, r › u › d2
a › d2

b

Lemma 1 ñ x ÞÑ 1, l, r › dag(l, a1, b1) › d2
a › d2

b

Frame rule :   dag(l, a1, b1)
spanning(l)  Da1

1 : a1
1 › b1 ^ @a1

1
mtree(l) ^ a1

1 „ a1

Da1
1 : x ÞÑ 1, l, r › a1

1 › b1 › d2
a › d2

b ++ @a1
1
mtree(l) ^ a1

1 „ a1

Auxiliary lemma (7) ñ Da1
1, w : x ÞÑ 1, l, r › a1

1 › b1 › d2
a › d2

b ++ @wd
2
a › a1

1 › b2 ^ @wdag(x, d2
a, a

1
1 › b2)

Lemma 1 ñ Da1
1, w : x ÞÑ 1, l, r › a1

1 › d1
b › db › d2

a › d2
b

Lemma 2 ñ Da1
1, w : x ÞÑ 1, l, r › a1

1 › d1
b › b2 › d2

a

Lemma 2 ñ Da1
1, w : x ÞÑ 1, l, r › w › d1

b

Lemma 1 ñ Da1
1, w : x ÞÑ 1, l, r › dag(r, d2

a, a
1
1 › b2) › d1

b

Frame rule :   Da1
1, w : dag(r, d2

a, a
1
1 › b2)

Exists rule : dag(r, d2
a, a

1
1 › b2)

spanning(r)
Da2

2 : a2
2 › a1

1 › b2 ^ @a2
2
mtree(r) ^ a2

2 „ d2
a

  Da1
1, w, a2

2 : a2
2 › a1

1 › b2 ^ @a2
2
mtree(r) ^ a2

2 „ d2
a

Da1
1, a

2
2, w : x ÞÑ 1, l, r › a2

2 › a1
1 › b2 › d1

b ++ @a2
2
mtree(r) ^ a2

2 „ d2
a

Lemma 1 ñ Da1
1, a

2
2, w : x ÞÑ 1, l, r › a2

2 › a1
1 › db › d2

b › d1
b

Da1
1, a

2
2, w : x ÞÑ 1, l, r › a2

2 › a1
1 › (b1 Y› b2)

Da1 : a1 › (b1 Y› b2) ^ @a1
mtree(x) ^ a1 „ a ^ @bb

1 Y› b2

Da1 : a1 › b ^ @a1
mtree(x) ^ a1 „ a
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C Lemmas proofs

Lemma 1
s, h |ùρ ℓ^@ℓP

ñ h = ρ(l) and s, ρ(l) |ùρ P
ñ s, h |ùρ P

Lemma 2

s, h |ùρ P ^@ℓP
ñ s, h |ùρ P  and s, ρ(ℓ) |ùρ P

P strictly exact + definitionñ h = ρ(ℓ)
ñ s, h |ùρ ℓ

Lemma 3 (propagation lemma)

tA^@lP u c tBu

tA › (emp^@lP )u c tBu
Frame

tA › (emp^@lP ) › (emp^@lP )u c tB › (emp^@lP )u

tA^@lP u c tB ^@lP u

Lemma 4 (mark auxiliary lemma) Let hd1 the part of the heap in ρ(u1) reachable
from pointers of ρ(dr). Let hd1

l
the heap ρ(u1)zhd1 .

us, ρ(u1) = hd1
l
Yhd1 . Let hv1 = hd1 Yρ(dr). hv1 is the union of a part of a dag,

pointing to parts of another dag: it only contains dag nodes pointing to each other,
and contains no cycles. us, hv1 holds a dag.

Now, let d1, d1
l, v

1 be the labels such that hd1 = ρ(d1), hd1
l
= ρ(d1

l), hv1 = ρ(v1).
en, @u1(d1

l › d
1)^@v1(d1 › dr)^@v1dag r.

Lemma 5 Each case of the definition of dag trivially implies a › b.

Lemma 6 Assume h |ùρ (a1 › b1) Y› (a2 › b2). en ρ(a1) is separated from ρ(b1),
but also from ρ(b2) by hypothesis. us, ρ(a1) may share memory cells only with
ρ(a2).

By the same reasoning, ρ(a2) is separated from ρ(b1), ρ(b2), and shares memory
only with ρ(a1). Consequently, the heap can be separated in two disjoint parts, one
holding ρ(a1) and ρ(a2), the other ρ(b1) and ρ(b2).

We can then conclude, h |ùρ (a1 Y› a2) › (b1 Y› b2).

Lemma 7 (spanning auxiliary lemma) Let hw = ρ(d2
a) Y ρ(a1

1) Y ρ(b2). ρ(a2)
contains a dag of unmarked nodes, with pointers to the marked nodes of ρ(b2). d2

a

contains a subdag of ρ(a2), with pointers to dom(ρ(da)); as this region is composed
of marked nodes (@a1

1
mtree(l)), ρ(d2

a) can be considered as a dag, with ρ(a1
1)Yρ(b2)

as “marked part”.
Introducing w as the label such that hw = ρ(w), we have @wd

2
a › a

1
1 › b

2 ^

@wdag(x, d2
a, b

2 › a1
1).
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D llStar rules for proving copytree
copytree.star

predicate dag(lltype , i64);
predicate dagnode(lltype , i64 , i64 , i64);
predicate tree(lltype , i64);
predicate treenode(lltype , i64 , i64 , i64);

predicate here(label);
predicate at(label , bool);

import "../ rules/llvm.logic";
import "../ specs/safe_stdlib.spec";

rewrite dagnode:
dagnode(lltype ?t, i64 ?x, i64 ?l, i64 ?r)
-> pointer(i64 ?x, named("struct.node") { i32 _c, i64 ?l, i64 ?r })

;

rewrite treenode:
treenode(lltype ?t, i64 ?x, i64 ?l, i64 ?r)
-> pointer(i64 ?x, named("struct.node") { i32 _c, i64 ?l, i64 ?r })

;

/*
* Rules encoding definitions of tree/dag
*/

rewrite dag_nil:
dag(lltype ?t, NULL ()) -> emp

;

rewrite tree_nil:
tree(lltype ?t, NULL ()) -> emp

;

rule nobacktrack tree_unfold_right:
bool ?f | bool ?fl * i64 ?x != NULL()

|-
bool ?fr * tree(lltype ?t, i64 ?x)

if
bool ?f | bool ?fl

|-
bool ?fr *
treenode(lltype ?t, i64 ?x, i64 _l, i64 _r) *
tree(lltype ?t, i64 _l) *
tree(lltype ?t, i64 _r)

;

rewrite dag_unfold_under_at:
!at(label ?l, dag(lltype ?t, i64 ?x)) * i64 ?x != NULL() * bool ?f
->

!at(label ?l, dag(lltype ?t, i64 ?x)) *
!at(label ?l,

here(label _node) *
here(label _a) *
here(label _b) *
here(label _c)) *

!at(label _node , dagnode(lltype ?t, i64 ?x, i64 _l, i64 _r)) *
!at(label _u, here(label _a) * here(label _b)) *
!at(label _v, here(label _b) * here(label _c)) *
!at(label _u, dag(lltype ?t, i64 _l)) *
!at(label _v, dag(lltype ?t, i64 _r)) *
bool ?f
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;

rule nobacktrack dag_fold:
bool ?f | here(label ?node) *

here(label ?a) *
here(label ?b) *
here(label ?c) *
!at(label ?node , dagnode(lltype ?t, i64 ?x, i64 ?l, i64 ?r)) *
!at(label ?u, here(label ?a) * here(label ?b)) *
!at(label ?v, here(label ?b) * here(label ?c)) *
!at(label ?u, dag(lltype ?t, i64 ?l)) *
!at(label ?v, dag(lltype ?t, i64 ?r)) *
bool ?fl
|-
bool ?fr *
dag(lltype ?t, i64 ?x)

if
bool ?f * dag(lltype ?t, i64 ?x) | bool ?fl |- bool ?fr

;

/*
* Reasonings on @s and their contents: make the proof go forward.
* Unfold/Fold @s.
*/

rule nobacktrack inline_at_labels2:
bool ?f | here(label ?l) *

!at(label ?l, here(label ?a) * here(label ?b)) * bool ?fl
|-
bool ?fr

if
bool ?f | here(label ?a) *

here(label ?b) *
!at(label ?l, here(label ?a) * here(label ?b)) *
bool ?fl
|-
bool ?fr

;

rule nobacktrack inline_at_labels4:
bool ?f | here(label ?l) *

!at(label ?l, here(label ?a) *
here(label ?b) *
here(label ?c) *
here(label ?d)) *

bool ?fl
|-
bool ?fr

if
bool ?f | here(label ?a) *

here(label ?b) *
here(label ?c) *
here(label ?d) *
!at(label ?l, here(label ?a) *

here(label ?b) *
here(label ?c) *
here(label ?d)) *

bool ?fl
|-
bool ?fr

;

rule nobacktrack fold_at2:
bool ?f | !at(label ^l, here(label ^l1) * here(label ^l2)) * bool ?fl
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|- here(label ^l) * bool ?fr
if
bool ?f | !at(label ^l, here(label ^l1) * here(label ^l2)) * bool ?fl

|- here(label ^l1) * here(label ^l2) * bool ?fr
;

rule nobacktrack fold_at4:
bool ?f | !at(label ^l, here(label ^l1) *

here(label ^l2) *
here(label ^l3) *
here(label ^l4)) *

bool ?fl
|-
here(label ^l) *
bool ?fr

if
bool ?f | !at(label ^l, here(label ^l1) *

here(label ^l2) *
here(label ^l3) *
here(label ^l4)) *

bool ?fl
|-
here(label ^l1) *
here(label ^l2) *
here(label ^l3) *
here(label ^l4) *
bool ?fr

;

rule nobacktrack pointsto_in_at:
bool ?f | here(label ?l) *

!at(label ?l, pointer(i64 ?x, 'a ?y) * bool ?p) *
bool ?fl
|-
pointer(i64 ?x, 'a ?z) *
bool ?fr

if
bool ?f * pointer(i64 ?x, 'a ?y) |

here(label _ll) *
!at(label _ll , bool ?p) *
!at(label ?l, pointer(i64 ?x, 'a ?y) * here(label _ll)) *
bool ?fl
|-
'a ?y = 'a ?z *
bool ?fr

;

rule nobacktrack pointsto_outside_at:
bool ?f | pointer(i64 ?x, 'a ?y) *

!at(label ?l, pointer(i64 ?x, 'a ?y) * bool ?p) *
bool ?fl
|-
here(label ?l) *
bool ?fr

if
bool ?f | bool ?fl *

!at(label _lll , bool ?p)
|-
here(label _lll) *
bool ?fr

;

rule nobacktrack label_emp:
bool ?f | !at(label ^l, emp) * bool ?fl |- here(label ^l) * bool ?fr

if
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bool ?f * here(label ^l) | !at(label ^l, emp) * bool ?fl |- bool ?fr
;

/*
* Basic reasonings on lemmas/@s
*/

rewrite at_label_eq:
!at(label ?a, here(label ?b)) -> label ?a = label ?b

;

rule match_at:
bool ?f | !at(label ^l, bool ?p) * bool ?fl |- !at(label ^u, bool ?p) * bool ?fr

if
bool ?f | !at(label ^l, bool ?p) * bool ?fl |- label ^u = label ^l * bool ?fr

;

rule nobacktrack equal_fresh:
bool ?f | bool ?fl |- ('a ?a = 'a ^u) * bool ?fr

with
fresh 'a ^u in bool ?fl;
fresh 'a ^u in bool ?f

if
bool ?f | bool ?fl * 'a ?a = 'a ^u |- bool ?fr

;

/*
* Bureaucraty
*/

rule nobacktrack remove_label:
bool ?f | here(label ?l) * bool ?fl |- here(label ?l) * bool ?fr

if
bool ?f * here(label ?l) | bool ?fl |- bool ?fr

;

rule nobacktrack remove_tree:
bool ?f | bool ?fl * tree(lltype ?t, i64 ?x)

|-
bool ?fr * tree(lltype ?t, i64 ?x)

if
bool ?f * tree(lltype ?t, i64 ?x) | bool ?fl |- bool ?fr

;

/*
* The spec for copytree
*/

procedure copytree(i64 %x) returns (i64 %z)
{here(label _l) * !at(label _l, dag(lltype "struct.node",i64 %x))}
{here(label _l) * tree(lltype "struct.node", i64 %z)}

;
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